INTRODUCTION

65 million people are currently being treated for epilepsy, a disease characterized by recurring seizures. Seizures are caused by abnormal hyperactivity of glutamatergic neurons ultimately leading to a neurotoxic environment, neuronal death, and an increase in proinflammatory cytokines, such as interleukin-1β (IL-1β). We discovered IL-1R1, the cognate receptor for IL-1, is expressed on glutamatergic neurons in the dentate gyrus, which may indicate neuronal IL-1R1 potentially plays an unknown role during epileptogenesis. Therefore, it is important to examine the role of neuronal IL-1R1 in a model of epilepsy.

OBJECTIVES

Our objectives were 1) to identify a relationship between IL-1R1 and seizures; and 2) to examine the effect of chronic IL-1 signaling on glutamatergic neurons in epilepsy.

MATERIALS AND METHODS

Intracerebroventricular (ICV) injections: Animals are anesthetized, and with the to the chart below, 4 days after injections, animals are euthanized and perfusion fixed with 4% paraformaldehyde or 24 h after KA injection the animals were used for Kainic acid (KA) injections. Intracerebroventricular (ICV) injections: Animals are anesthetized, and with the to the chart below, 4 days after injections, animals are euthanized and perfusion fixed with 4% paraformaldehyde or 24 h after KA injection the animals were used for Kainic acid (KA) injections.

EXPERIMENTAL DESIGN

RESULTS

IL-1R1 is expressed on glutamatergic neurons in the dentate gyrus of the hippocampus

Contra

CONCLUSIONS

- IL-1R1 is located on glutamatergic neurons in the dentate gyrus.
- Neuronal IL-1R1 expression is upregulated during KA induced seizures.
- IL-1R1 does not initially change average seizure severity.
- Chronic neuronal IL-1R1 signaling may alleviate seizure severity via an unknown mechanism.
- Further research will focus on the effects of cell type specific IL-1R1 signaling on seizure severity.

REFERENCES

-Liu et al. "Interleukin 1 Type 1 Receptor Antagonist A Generic Mouse Model for Studying Interleukin 1 Receptor-Antagonist Effects in Specific Cell Types." Cellular/Molecular Interactions 1 Type 1 Receptor Antagonist A Genetic Mouse Model for Studying Interleukin 1 Receptor-Mediated Effects in Specific Cell Types (2015) 2860-870. The Journal of Neuroscience. Cellular/Molecular Interactions
- Valentine, L et al. "Modulation of the IL-1β/Toll-like Receptor Pathway Mediates Disease-modification Therapeutic Effects in a Model of Acquired Epilepsy." Neurology of Chronic Disease

ACKNOWLEDGMENTS

All funding was granted to IG O by the NIH funding source: MH103665